Ecological connectivity shapes quasispecies structure of RNA viruses in an Antarctic lake.
نویسندگان
چکیده
RNA viruses exist as complex mixtures of genotypes, known as quasispecies, where the evolution potential resides in the whole community of related genotypes. Quasispecies structure and dynamics have been studied in detail for virus infecting animals and plants but remain unexplored for those infecting micro-organisms in environmental samples. We report the first metagenomic study of RNA viruses in an Antarctic lake (Lake Limnopolar, Livingston Island). Similar to low-latitude aquatic environments, this lake harbours an RNA virome dominated by positive single-strand RNA viruses from the order Picornavirales probably infecting micro-organisms. Antarctic picorna-like virus 1 (APLV1), one of the most abundant viruses in the lake, does not incorporate any mutation in the consensus sequence from 2006 to 2010 and shows stable quasispecies with low-complexity indexes. By contrast, APLV2-APLV3 are detected in the lake water exclusively in summer samples and are major constituents of surrounding cyanobacterial mats. Their quasispecies exhibit low complexity in cyanobacterial mat, but their run-off-mediated transfer to the lake results in a remarkable increase of complexity that may reflect the convergence of different viral quasispecies from the catchment area or replication in a more diverse host community. This is the first example of viral quasispecies from natural aquatic ecosystems and points to ecological connectivity as a modulating factor of quasispecies complexity.
منابع مشابه
Relation Between RNA Sequences, Structures, and Shapes via Variation Networks
Background: RNA plays key role in many aspects of biological processes and its tertiary structure is critical for its biological function. RNA secondary structure represents various significant portions of RNA tertiary structure. Since the biological function of RNA is concluded indirectly from its primary structure, it would be important to analyze the relations between the RNA sequences and t...
متن کاملQuasispecies structure and persistence of RNA viruses.
Viral quasispecies are closely related (but nonidentical) mutant and recombinant viral genomes subjected to continuous genetic variation, competition, and selection. Quasispecies structure and dynamics of replicating RNA enable virus populations to persist in their hosts and cause disease. We review mechanisms of viral persistence in cells, organisms, and populations of organisms and suggest th...
متن کاملQuasispecies dynamics and fixation of a synonymous mutation in hantavirus transmission.
RNA-dependent RNA polymerases, the key enzymes in replication of RNA viruses, have a low fidelity; thus, these viruses replicate as a swarm of mutants termed viral quasispecies. Constant generation of new mutations allows RNA viruses to adapt swiftly to a novel environment through selection of both pre-existing and de novo-generated genetic variants. Here, quasispecies dynamics were studied in ...
متن کاملThe RNA virus quasispecies: fact or fiction?
In their recent review, Más et al. propose that the existence of quasispecies has become a universal rule for RNA viruses and may be extended to other biological systems. Although the historical perspective on quasispecies theory provided by Más et al. serves as a valuable introduction to the subject, their article presents a polarized view of the applicability of quasispecies theory to RNA vir...
متن کاملInterferon Resistance of Hepatitis C Virus Genotypes 1a/1b: Relationship to Structural E2 Gene Quasispecies Mutations
Hepatitis C virus (HCV) envelope glycoprotein-2 (E2) inhibits the interferon (IFN)–induced, double –stranded RNA activated protein kinase (PKR) via PKR eukaryotic initiation factor-2α phosphorylation homology domain (PePHD). Present study examined the genetic variability of the PePHD in patients receiving interferon therapy. The PePHD region from HCV genotype 1a/1b infected patients receiving I...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular ecology
دوره 24 19 شماره
صفحات -
تاریخ انتشار 2015